Connect with us

Science

U.S. ranks 24th in newly released 2020 Environmental Performance Index

Published

on

June 4 (UPI) — The United States isn’t doing a very good job of protecting the environment, according to researchers at Yale and Columbia universities. The U.S. ranks 24th in the 2020 Environmental Performance Index, released Thursday.

The relatively poor ranking, putting the United States behind most of Europe, reflects the nation’s growing environmental and sustainability problems — including the rolling back of EPA rules and relaxed enforcement for air and water protections by the Trump administration — experts say.

Scientists at Yale and Columbia ranked 180 countries on 32 key indicators across 11 categories related to environmental health and ecosystem vitality. The latest index, produced every two years, was compiled using a data-driven and empirical approach, according the report’s authors.

“This is the most comprehensive Environmental Protection Index that we’ve produced yet,” Zach Wendling, postdoctoral associate at the Yale Center for Environmental Law and Policy, said during a press conference on Zoom. “The top ten consists entirely of European countries that have made long-term investments in public health and environmental protection.”

“The U.S. comes in 24th, at the bottom of wealthy democracies,” Wendling said.

According to the EPI and the index’s authors, Denmark leads the world in the effort to protect the environment and mitigate climate change.

“We have adopted a climate law with broad support that legally binds us to reduce our greenhouse gas emissions by 70 percent of 1990 emissions,” said Dan Jørgensen, the minister of climate and energy in Denmark.

According to Jørgensen, Denmark’s political leaders asked a team of scientists to determine what the European nation needed to do to adequately slow climate change.

“Now, our task is to make the necessary possible,” he said.

The Danish politician said slowing climate change will require hard work by dozens of countries all over the world.

“We are proud to be number one, but we really welcome competition in the years ahead,” Jørgensen said.

Denmark is followed in the rankings by Luxembourg, Switzerland, Britain, France, Austria, Finland, Sweden, Norway and Germany.

Authors of the new EPI report used data to spot environmental problems, assess the deployment of environmental policy solutions and determine whether environmental policies are producing results.

Countries that are making concerted efforts to protect air and water and protect environmental problems — and getting results — are likely to score higher marks and get positioned near the top of the index.

In addition to analyzing data related to air and water pollution, scientists looked at key indicators related to biodiversity, habitat and fisheries health, ecosystem services and climate change. When aggregating data to arrive at the final rankings, researchers gave more weight to some categories and key indicators than to others.

“The largest issue categories — the issues that rest of the world seems to care most about — are climate change, biodiversity and air quality,” Wendling said.

Researchers hope countries will use the index’s granular data to better understand how they rank in terms of specific areas of environmental protection and sustainability.

“For those that are lagging, there are opportunities to look issue by issue at where there’s room for improvement,” said Daniel Esty, professor of environmental law and policy at Yale. “We hope countries will view the EPI as a spur to further action.”



Source link

Science

Sounds made by fluttering feathers help fork-tailed flycatchers communicate

Published

on

Sept. 22 (UPI) — Scientists have added another species to the list of birds that use sounds made with their feathers to communicate.

The male fork-tailed flycatcher, a passerine bird species native to the American tropics, creates unique sounds by fluttering its feathers at high frequencies, according to research published Wednesday in the journal Integrative and Comparative Biology.

“Back in the 1960’s, scientists noticed that they produce a distinctive sound only during a particular flight display,” researcher Christopher Clark, told UPI in an email.

“And those species of flycatcher in the genus Tyrannus, those that make the most distinctive sounds have the most distinctly shaped outer primary feathers,” said Clark, an associate professor of evolutionary biology at the University of California Riverside.

For the latest research, scientists conducted field studies to better understand both the mechanics of the feather fluttering and its communicative utility.

“We found that the birds don’t produce sounds every time they fly, but only under specific behavioral contexts,” lead study author Valentina Gomez told UPI in an email.

“One is during the pre-dawn display, after waking up. They begin displaying by singing and then they include feather songs. They also produce these sounds during territorial displays,” said Gomez, a doctoral student at the University of Illinois at Chicago.

To study the fluttering’s acoustic qualities, scientists captured males with mist netting, and used cameras and microphones to record the sounds the birds made as they escaped and retreated.

Fork-tailed flycatchers are quite territorial and aggressively defend their nests. Males are especially aggressive, regularly engaging in aerial battles with other males over mating opportunities and territory. They’re also more than willing to attack larger birds that stray too close to their nests.

Researchers used a taxidermy hawk outfitted with microphones and a camera to measure the movement of the fork-tailed flycatcher’s feathers during displays of aggression. The recordings revealed a difference in the sounds made by two subspecies, one that migrates long distances and another that is more stationary.

“Differences in migration likely influenced the shape of feathers and this affects the frequency at which they flutter,” Gomez said.

In effect, the two subspecies have developed dialects. Researchers suspect this phenomenon might help drive speciation, or species divergence.

“The evolution of different movement behaviors promotes the initial trigger of the speciation process,” Gomez said. “Through time, correlated evolution of morphological traits affects how they communicate.”

In other words, the difference in sound-making didn’t jumpstart the speciation process, but Gomez and her research partners hypothesize that the development of feather-flapping dialects works to reinforce the divergence.

Similarly, while the sound-making feathers of fork-tailed flycatchers may have initially evolved in response to pressures unrelated to communication, researchers claim the birds now utilize their sound-making abilities with intentionality. They’ve harnessed the power of their fluttering features for the purposes of communication.

“The birds alter how they are flapping their wings when they produce sound; their wingbeat frequency goes up by quite a bit,” Clark said. “The altered kinematics is another clue that this is ‘intentional.'”

While non-vocal communication has been observed in a variety of bird genus and species, scientists suspect the prevalence of the practice is underestimated.

Researchers hope that future investigations of feather-based communication among flycatchers will offer new insights into why so many birds have evolved non-vocal communication over and over again.

While the latest findings suggest the fork-tailed flycatcher relies on feather-based communication for pair bonding and displays of aggression, many questions about the fluttering’s utility remain.

“We still need to learn a lot about bird acoustic perception,” Gomez said.



Source link

Continue Reading

Science

Once exposed to humans, animals start to lose their fear of predators

Published

on

Sept. 22 (UPI) — New research suggests animals begin to lose their fear of predators once they start encountering humans on a regular basis.

For the study, scientists surveyed the findings of 173 peer-reviewed papers on predator avoidance behaviors and traits deployed by 102 species of domesticated, captive and urbanized mammals, birds, reptiles, fish and mollusks.

The analysis, published Tuesday in the journal PLOS Biology, showed predator avoidance traits and behaviors, including vigilance, freezing and fleeing, decreased as a result of exposure to humans.

Researchers found individual variation in anti-predator characteristics increased upon a species’ initial exposure to humans, but then gradually decreased after generations of human exposure.

“While it is well known that the fact of being protected by humans decreases anti-predator capacities in animals, we did not know how fast this occurs and to what extent this is comparable between contexts,” lead researcher Benjamin Geffroy, biologist at the University of Montpellier in France, said in a news release.

The findings suggest behavioral flexibility allows for the initial increase in the variability of anti-predator traits, but researchers suspect genetic changes solidify declines in predator avoidance as subsequent generations adjust to the presence of humans.

In the studies analyzed by Geffroy and his colleagues, domesticated animals lose their anti-predator traits much more quickly than urbanized animals, which can cause problems when domesticated or urbanized species are released back into the wild.

“We also integrated physiological traits in the study but they were much less numerous that behavioral traits,” Geffroy said. “We believe they should be systematically investigated to draw a global pattern of what is happening at the individual level.

“We need more data to understand whether this occurs also with the mere presence of tourists,” Geffroy said.



Source link

Continue Reading

Science

Search and rescue dogs fared well after work at 9/11 sites, study says

Published

on

Search and rescue dogs used during the 9/11 attacks lived as long as dogs not at the World Trade Center in New York City and the Pentagon, a new study finds.

“I was at Ground Zero and I would hear people make comments like, ‘Did you hear that half of the dogs that responded to the bombing in Oklahoma City died of X, Y, or Z?’ Or they’d say dogs responding to 9/11 had died,” said Dr. Cynthia Otto, director of the University of Pennsylvania’s Working Dog Center, in Philadelphia. “It was really disconcerting.”

Otto and her School of Veterinary Medicine colleagues’ findings are reassuring.

Dogs that participated in search-and-rescue efforts after 9/11 lived as long as search-and-rescue dogs not at the scene — a median of about 12.8 years, meaning half died sooner, half did not. They also outlived the life spans of their breed. There was no difference in the dogs’ cause of death.

“Honestly, this was not what we expected it’s surprising and wonderful,” said Otto, a veterinarian.

The researchers expected to see respiratory problems in the exposed dogs, but they did not. The most common cause of death was age-related conditions, such as arthritis and cancer.

For the study, Otto collected data on 95 dogs that had worked at the World Trade Center, the nearby Fresh Kills Landfill in Staten Island, N.Y., or Pentagon disaster sites in Washington, D.C. They compared these dogs with 55 search-and-rescue dogs that were not deployed on 9/11.

“We anticipated that the dogs would be the ‘canary in the coal mine’ for the human first responders since dogs age faster than humans and didn’t have any of the protective equipment during the response,” Otto said in a university news release. “But we didn’t see a lot that was concerning.”

Generally, these dogs are stronger and healthier than pets, which might partly explain why the dogs fared well, she said.

The findings were published Sept. 21 in the Journal of the American Veterinary Medical Association.

More information

For more on responder health after 9/11, visit the New York State Department of Health.

Copyright 2020 HealthDay. All rights reserved.



Source link

Continue Reading

Trending