Connect with us

Science

Humans in ancient Turkey adapted to climate change and thrived

Published

on

Oct. 30 (UPI) — Climate change can trigger societal collapse and force populations to move, but not always.

New archaeological research suggests populations in ancient Turkey were able to adapt and flourish in the face of two periods of climate change, occurring between 4,500 and 3,000 years ago.

The findings — published this week in the journal PLOS One — suggest human responses to climate change are surprisingly variable. The challenges presented by climate change can stress societies beyond the breaking point, but also provide opportunities for resiliency and ingenuity.

For the study, researchers collected and analyzed local, fine-scale archeological data across a northern portion of the Levant known as Tell Tayinat. The Levant is a historical region of human occupation that stretches across the eastern edge of the Mediterranean Sea.

“The study shows the end of the Early Bronze Age occupation at Tayinat was a long and drawn out affair that, while it appears to coincide with the onset of a mega-drought 4,200 years ago, was actually the culmination of processes that began much earlier,” Tim Harrison said in a news release.

“The archaeological evidence does not point towards significant local effects of the climate episode, as there is no evidence of drought stress in crops,” said Harrison, a professor of archaeology at the University of Toronto and director of the Tayinat Archaeological Project.

Instead, researchers found archaeological evidence of local political and spatial reconfiguration.

Some of the earliest cities and state-level societies were established in the Levant and surrounding Middle East, during the mid-to late Early Bronze Age, between 3000 and 2000 B.C., and the Late Bronze Age, between 1600 and 1200 B.C.

These novel systems of social and political organization proved unstable, with both periods culminating in collapse.

Without precise, fine-scale archaeological evidence, researchers were unable to tease out detailed changes in societal activity. As a result, archaeologists turned to shifts in climate to explain the societal collapses that marked the ends of the early and late Bronze Age.

Using radiocarbon dating, researchers created a more fine-scale timeline of societal activity at Tayinat during two periods of climate change.

“The absolute dating of these periods has been a subject of considerable debate for many years, and this study contributes a significant new dataset that helps address many of the questions,” said lead study author Sturt Manning.

“The detailed chronological resolution achieved in this study allows for a more substantive interpretation of the archaeological evidence in terms of local and regional responses to proposed climate change, shedding light on how humans respond to environmental stress and variability,” said Manning, a professor of classical archaeology at Cornell University.

The more robust archaeological timelines produced by Manning and company revealed a period of resettlement and heightened societal activity some 3,200 years ago, despite a period of heightened aridity. Amidst the threat of climate change, the settlement thrived.

The settlement’s restructuring wasn’t a sign of collapse, the new data showed, but evidence of resilience and adaptation.

“The settlement of Tayinat may have been undertaken to maximize access to arable land, and crop evidence reveals the continued cultivation of numerous water-demanding crops, revealing a response that counters the picture of a drought-stricken region,” said Harrison. “The Iron Age at Tayinat represents a significant degree of societal resilience during a period of climatic stress.”



Source link

Science

Scientists program robot swarm to count penguins

Published

on

Oct. 28 (UPI) — Penguins occupy ecosystems increasingly vulnerable to climate change. Tracking their abundance and distribution is vital to the project of tracking global warming’s ecological effects — but counting penguins is difficult work.

To make the task of tallying the size of penguin colonies a bit easier, researchers recruited the assistance of not one robot, but a whole swarm of bots.

“The idea actually grew out of a conversation at my sister-in-law’s wedding,” Mac Schwager, an assistant professor of aeronautics and astronautics at Stanford University, told UPI in an email. “I met our co-author Annie Schmidt at the wedding, and learned that she studies penguin populations in Antarctica, and one of their key challenges was counting the penguins.”

“I told her I worked with autonomous groups of drones that could be used to take images for counting the penguins,” Schwager said. “At that point, it was clear that we had a great research synergy.”

Researchers typically use a single drone to conduct aerial surveys of penguin colonies, but the process is slow and requires a lot of time, effort and skill from the drone pilot.

In collaboration with Schmidt and her team of biologists, Schwager and Stanford grad student Kunal Shah programmed a swarm of drones to autonomously survey penguin colonies.

The team of scientists described their novel solution in a new paper published Wednesday in the journal Science Robotics.

“Our main technical innovation is our path planning algorithm, the computer program that decides where each drone should go and when,” Schwager said. “Existing methods typically plan paths like a lawnmower, or a vacuum cleaner, going back and forth over the survey area.”

“It turns out, other paths can be much more effect, in the sense that they can take the same images while requiring less back-tracking, and while making sure that the drone is close enough to the base camp to make it back safely with the remaining battery life.”

Previously, it took scientists three days to survey Antarctic penguin colonies using a solitary, hand-piloted drone. The robot swarm programmed by Schwager and his colleagues completed surveys in just two to three hours.

Time is precious in Antarctica, where animals are often on the move and weather can quickly take a turn for the worse. But speed isn’t the swarm’s only advantage. The self-piloted robots also offer reliability.

“If one drone fails, the other drones can take up the slack and still finish the survey,” Schwager said.

For now, Schwager’s swarm of drones only take pictures. The counting is done back at base after the survey has been completed and the photographs downloaded onto computers. But in the future, Schwager said the drones could use artificial intelligence to count penguins as they go.

Schwager has previously programmed robotic swarms to track the movement of people and cars on the ground in order to analyze pedestrian and vehicular traffic patterns, and he thinks similar algorithms could be adopted to track animal movements.

“The system could also be used to survey forests and other landscapes for wildfire risk, a problem that is very close to home right now for us at Stanford,” he said. “We could also use the drones to survey construction sites, mining sites, agricultural fields, to assess damage after a natural disaster, or to help find lost hikers.”

Biologists and study co-authors Schmidt and Grant Ballard are currently testing the drone aerial survey system in Antarctica. Meanwhile, Schwager and his colleagues at Stanford continue to make tweaks to the system to help the drones make better in-flight decisions and avoid collisions with birds or drones that have gone astray.

“We are passionate about using teams of autonomous drones to help us to understand and take care of the natural environment around us,” Schwager said.



Source link

Continue Reading

Science

Fight judges favor aggression over skill, study shows

Published

on

Oct. 28 (UPI) — Often to the chagrin of fans and competitors, wrestling matches, boxing bouts, mixed martial arts and other types of combat competitions are frequently decided by judges.

That’s bad news for competitors that rely more on skill than vigor. New research suggests judges are more likely to award victory to aggressive fighters than skilled fighters, all else being equal.

For the study, published this week in the journal Biology Letters, researchers analyzed data collected from 550 men’s and women’s mixed martial arts contests organized by the Ultimate Fighting Championship.

The data included the percentage of strikes that landed firmly and accurately, a measure of skill, as well as the number of strikes attempted per second, a measure of vigor or aggression.

Regardless of the match conclusion, whether decided by knockout or judges’ decision, the data showed the victor was the more vigorous fighter. However, the correlation between vigor and victory was strongest for matches decided by the scores of the judges.

Fighting skillfully wasn’t entirely discounted. The data showed addition of skill enhanced the advantage of vigor, but the research showed vigor was the most important factor for fights decided by the judges.

“MMA is a fast paced sport and one of the suggestions from our research would be that judges may find vigor easier to assess than skill,” lead author Sarah Lane, postdoctoral research fellow at the University of Plymouth, said in a news release. “That, in turn, leads them to overvalue it when making their decisions, especially in longer fights where one fighter tires more quickly and the disparity in vigor is easier to spot.”

“The advance of technology such as instant replays could potentially counter this, but until they are employed more regularly rate of attack is likely to remain the most important performance trait for victory by decision,” Lane said.

The research was funded by the Biotechnology and Biological Sciences Research Council, which supports studies focused on the role of skill in animal contests.

Most of Lane’s time is spent studying hermit crab fighting, but the authors of the latest paper suggest their analysis of human fights could have implications for understanding physical competitions among animals.

There aren’t typically knockouts in fights between rival animals. Often, males joust and tussle to demonstrate their physical dominance to would be rivals and mates. Like in boxing, a competitor’s performance is subjective.

“Human combat sports provide a unique scenario in which to explore how performance traits such as skill and vigor are perceived, both by participants and observers,” said study co-author Mark Briffa.

“However, because of the obvious communication issues, very little is known about the accuracy with which fighting animals more widely judge the abilities of their rivals,” said Briffa, a professor of animal behavior at Plymouth.



Source link

Continue Reading

Science

Graphene-based memory resistors could pave the way for brain-based computing

Published

on

Oct. 29 (UPI) — Researchers have created a new computer component capable of toggling between 16 possible memory states — the kind of computing versatility provided by brain synapses.

The new component, called a graphene field effect transistor, described Thursday in the journal Nature Communications, could pave the way for advances in brain-inspired computing.

Modern computers are exclusively digital, featuring two states: on-off or zero and one. Engineers at Penn State University are working to build a computer that replicates the brain’s analog nature, capable of hosting many different states.

If a digital computer’s information processing components work like a light switch, toggling only between on and off, then an analog computer is like a light dimmer.

Scientists have been investigating the potential of brain-based computing for decades, but analog computers have been overshadowed by the advances in traditional computing power. However, the rise of big data and smart devices like self-driving cars has highlighted the need for more computing efficiency.

“We have powerful computers, no doubt about that, the problem is you have to store the memory in one place and do the computing somewhere else,” lead researcher Saptarshi Das, an assistant professor of engineering science and mechanics at Penn State, said in a news release.

All the movement of information required by the bifurcation of memory to logic in modern computers puts a strain on speed. It also requires more spaces. Das and his research partners estimate that their graphene field effect transistor can help eliminate this bottleneck.

“We are creating artificial neural networks, which seek to emulate the energy and area efficiencies of the brain,” said study first author Thomas Shranghamer.

“The brain is so compact it can fit on top of your shoulders, whereas a modern supercomputer takes up a space the size of two or three tennis courts,” said Shranghamer, a doctoral student in the Das group.

Brain synapses can be quickly reconfigured to create a variety of neural network patterns. Likewise, the new graphene field effect transistor, formed by a one-atomic-thick layer of carbon atoms, can be used to control 16 possible memory states.

Researchers were able to reconfigure the transistor, effectively toggling between memory states, by applying a brief electric field to the graphene layer.

“What we have shown is that we can control a large number of memory states with precision using simple graphene field effect transistors,” Das said.

Das and his research partners are now looking to work with semiconductor companies to attempt to scale-up the production of the new technology.



Source link

Continue Reading

Trending