Connect with us

Science

Giant lizards improved their flying abilities over millions of years

Published

on

Oct. 28 (UPI) — During their 150 million-year existence, pterodactyls and other winged reptiles known as pterosaurs steadily improved their flying abilities.

According to a paper published Wednesday in the journal Nature, pterosaurs doubled their flying efficiency over the course of their evolutionary history.

Unfortunately, their improved flying couldn’t save them from the extinction event that wiped out the dinosaurs 66 million years ago.

For the study, scientists analyzed the pterosaur fossil record using a new model designed to measure the flight efficiency of modern birds. The data showed pterosaurs didn’t benefit from major evolutionary breakthrough.

Instead, the winged reptiles made small physiological improvements over the course of their existence, slowly but steadily improving their flying prowess.

“Pterosaurs were a diverse group of winged lizards, with some the size of sparrows and others with the wingspan of a light aircraft,” lead study author Chris Venditti said in a news release.

“Fans of the movie Jurassic World will have seen a dramatization of just how huge and lethal these creatures would have been. Their diet consisted mostly of other animals, from insects to smaller dinosaurs,” said Venditti, an evolutionary biologist at the University of Reading in Britain.

Numerous studies have showcased the process of natural selection across small timescales, but identifying efficiency improvements across longer timescales has proven difficult.

“Our new method has allowed us to study long-term evolution in a completely new way, and answer this question at last by comparing the creatures at different stages of their evolutionary sequence over many millions of years,” Venditti said.

Scientists analyzed the shifting skeletal structures and dimensions of 75 pterosaur species over 150 million years. Though most pterosaurs doubled their flying efficiency, researchers found one group invested their evolutionary capital in size.

Azhdarchoids, researchers found, got bigger but not better at flying. Their size advantage allowed them to overcome their pedestrian flying abilities. One group member, Quetzlcoatlus, grew as long as a giraffe.

“This is unique evidence that although these animals were competent fliers, they probably spent much of their time on the ground,” said study co-author Joanna Baker, evolutionary biologist at Reading. “Highly efficient flight probably didn’t offer them much of an advantage, and our finding that they had smaller wings for their body size is in line with fossil evidence for their reduced reliance on flight.”

Not all Jurassic species that took to the skies were able to achieve longevity.

Research published earlier this month revealed the evolutionary failures of a pair of gliding dinosaur species. Outcompeted by birds from below and pterosaurs from above, the gliding species Yi and Ambopteryx never had the chance to evolve improved flying abilities.



Source link

Science

NASA’s OSIRIS-REx touches down on asteroid Bennu to nab sample

Published

on

Oct. 20 (UPI) — NASA’s OSIRIS-REx touched down on asteroid Bennu on Tuesday evening in a mission to scoop a sample of rocks and dirt.

The spacecraft — the Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer — made soft contact with the asteroid at 6:12 p.m. EDT.

The historic “touch and go” event featured animation displaying OSIRIS-REx’s sample collection activities in real time. It takes time for real images of the touchdown to travel back to the Earth, so they won’t be released to the public until Wednesday.

The craft executed a series of maneuvers over the course of several hours before making soft contact with the surface of the asteroid to collect regolith, or rocks and dirt.

“It will be four and a half hours of anxiousness,” Beth Buck, OSIRIS-REx mission operations manager at Lockheed Martin Space, said in a news conference ahead of the event.

Buck made a comparison to the descent of a spacecraft on Mars, when there is typically “seven minutes of terror.”

The goal is to learn more about the solar system’s history and help “planetary defense” engineers with missions to protect earth from rogue asteroids. Bennu is believed to be a window into the solar system’s past since it’s a pristine, carbon-rich body carrying building blocks of both planets and life.

At around 1:50 p.m. EDT, the spacecraft left orbit around the asteroid before executing a series of burns to position itself over a sampling area nicknamed Nightingale.

Once in position, the craft began its approach to the asteroid at 5:50 p.m. EDT. It then spent about 15 seconds attempting to collect the regolith sample before backing away again.

The area, which is 52 feet in diameter, will make for a more demanding landing than expected, Kenneth Getzandanner, OSIRIS-REx flight dynamics manager at the NASA Goddard Space Flight Center in Maryland, said in the news conference.

The original mission called for a landing “zone” about 150% larger than Nightingale, at 82 feet, but that changed because Bennu was more rocky than expected.

The goal was to collect at least 1.7 ounces of fine-grained material, but the spacecraft can carry up to 4.4 pounds, Heather Enos, OSIRIS-REx deputy principal investigator at the University of Arizona said.

“I would love for that capsule to be completely full,” Enos said.

Though early images from the asteroid should hint at whether the mission succeeded, it will take engineers roughly 10 days to compare and analyze the mass before and after the maneuver to actually know how much dirt is inside the OSIRIS-REx.

If it failed, the spacecraft has enough fuel to attempt two more touch downs to collect material.

The spacecraft is expected to return to Earth, with the regolith sample from Bennu, in 2023.



Source link

Continue Reading

Science

SpaceX scrubs Starlink launch until Thursday, if weather cooperates

Published

on

Oct. 21 (UPI) — Just three days after sending 60 more Starlink satellites into orbit, SpaceX is aiming to launch another batch of broadband satellites into space from Florida.

If the weather cooperates, Thursday’s launch will be SpaceX’s 15th Starlink mission.

Liftoff had been scheduled for 12:29 p.m. EDT Wednesday aboard a Falcon 9 rocket at Launch Complex 40 at Cape Canaveral Air Force Station, but controllers scrubbed the launch due to weather and rescheduled for 12:14 p.m. on Thursday.

With a launch Sunday, SpaceX increased the size of their Starlink constellation to nearly 800 satellites. The 15th mission will see another 60-odd satellites join the network.

“The goal of Starlink is to create a network that will help provide Internet services to those who are not yet connected, and to provide reliable and affordable Internet across the globe,” according to the Kennedy Space Center.

Weather for Wednesday’s planned launch had looked so-so and the Space Force’s 45th Weather Squadron predicted a 60 percent chance of favorable conditions.

“A mid-level inverted trough and associated easterly wave currently across the Bahamas will meander into the state over the next few days, bringing enhanced moisture, cloud cover, and instability with a higher coverage of showers and storms,” Space Force forecasters wrote.

They said Thursday’s forecast looks quite similar to Wednesday’s.

Earlier this month, SpaceX founder and CEO Elon Musk tweeted that Starlink’s constellation was big enough to begin beta-testing the Internet service system in both the United States and southern Canada.

SpaceX has already offered Starlink Internet services to emergency responders in wildfire-stricken areas of Washington State.

Washington’s Hoh tribe is also using the Internet service to provide their members online education and telehealth services.



Source link

Continue Reading

Science

Chernobyl-level radiation harms bumblebee reproduction

Published

on

Oct. 21 (UPI) — Bees are more sensitive to radiation than scientists thought. Scientists found the reproduction rates of bumblebees declined significantly when exposed to Chernobyl-level radiation.

The research, published Wednesday in the journal Proceedings of the Royal Society B: Biological Sciences, suggests radiation in Ukraine’s Chernobyl Exclusion Zone could impair pollination services, triggering wider ecological consequences than previously estimated.

Humans are not allowed to live in the Chernobyl Exclusion Zone, the disaster area more directly impacted by the 1986 nuclear accident, the worst in history. However, the destroyed nuclear reactors are surrounded by forests that are populated by robust populations of birds, bears, bison, lynx, moose, wolves and more.

Efforts to gauge the effects of radiation contamination on insects have yielded mixed results in the past. While some studies have suggested insects are relatively radiation-resistant, others have demonstrated significant impairment.

When researchers exposed bumblebees in the lab to radiation dose of 100 µGyh-1, an amount approximating exposure inside the Chernobyl Exclusion Zone, reproduction rates among the bees dropped between 30 and 45 percent.

Researchers found a direct correlation between the size of the radiation dose and reproduction rate declines. Lower levels of radiation had a smaller effect, while larger doses yielded greater declines.

Scientists were surprised to find they were able to detect reproductive rate declines at very small levels of radiation exposure.

“Our research provides much needed understanding as to the effects of radiation in highly contaminated areas and this is the first research to underpin the international recommendation for the effects of radiation on bees,” lead study author Katherine Raines, environmental scientist at the University of Stirling in Scotland, said in a news release.



Source link

Continue Reading

Trending